

Disappearing track analyses for European Strategy

Monica D'Onofrio
University of Liverpool

EF10-Snowmass meeting 4/6/2020

Higgsino EWK processes

Processes: $\chi^{+}_{1}\chi^{-}_{1}$, $\chi^{\pm}_{1}\chi^{0}_{2}$, $\chi^{0}_{1}\chi^{0}_{2}$

Higgsino-like (i.e. large higgsino component but not pure):

 $\rightarrow \Delta M(NLSP, LSP) \sim O(GeV)$

Pure-higgsino:

 \rightarrow Δ M ~ 160 MeV - targeted by disappearing track analyses (~ 350 MeV for wino-cases)

Thermal Higgsino/Wino dark matter

- Thermal freeze-out mechanism provides a cosmological clue for the observed DM density
- Most straightforward example of a DM thermal relic: massive particle with EW gauge interactions only
- Spin-1/2 particles transforming as doublets or triplets under SU(2) symmetry, usually referred to as Higgsino and Wino
 - Although they are not really "SUSY" related phenomenology is equivalent

In the following, direct searches are presented in a bit more detail

ATL-PHYS-PUB-2018-031

HL-LHC: Disappearing track signatures

Very challenging with high pile-up → not shown in this sketch

A disappearing track occurs when the decay products of a charged particle, like a supersymmetric chargino, are not detected (disappear) because they either interact only weakly or have soft momenta and hence are not reconstructed.

Variable	SR Selection
Lepton veto p_T [GeV]	>20
$\min\{\Delta\phi(\mathrm{jet}_{1-4},E_{\mathrm{T}}^{\mathrm{miss}})\}$	> 1
$E_{ m T}^{ m miss}$ [GeV]	> 300
Leading jet p_T [GeV]	> 300
Leading tracklet p_T [GeV]	> 150
$\Delta\phi(E_{\mathrm{T}}^{\mathrm{miss}},\mathrm{trk})$	< 0.5

Tracklet reconstruction:

- "standard" tracks are reconstructed;
- track reconstruction is then rerun with looser criteria
 → >= 4 pixel hits using only input hits not associated with tracks
- Tracklets are then extrapolated to the strip detectors
- p_T > 5 GeV and |η| < 2.2

Event selection:

- Use boosts from ISR jets to trigger events
- Lepton veto and kinematic selections applied to reduce background

HL-LHC: Disappearing track signatures

ATL-PHYS-PUB-2018-031

Very challenging with high pile-up → not shown in this sketch

A disappearing track occurs when the decay products of a charged particle, like a supersymmetric chargino, are not detected (disappear) because they either interact only weakly or have soft momenta and hence are not reconstructed.

Two sources of background contributions:

 SM particles that are reconstructed as tracklets, i.e. hadrons scattering in detector material or electrons undergoing bremsstrahlung

1) use samples of single e or π passing through the current ATLAS detector layout to estimate the probability that an isolated e or hadron leave a disappearing track 2) Scale it to account for ratio of material in the current ATLAS inner detector and the upgraded inner tracker

- Events which contain fake tracklets:
 - from $Z \rightarrow vv$ or $W \rightarrow lv$ where lepton is lost
 - Scaled by the expected fake tracklet probability
 - Fakes are also the largest source of uncertainties (~30% of total background)

HL-LHC: Disappearing track signatures

<u>//</u>	
	SR
Total SM	4.6 ± 1.3
V+jets events	0.17 ± 0.05
$t\bar{t}$ events	0.02 ± 0.01
Fake tracklets	4.4 ± 1.3

Fakes mostly arising from Z→vv

Wino: ~ 850 GeV exclusion (~500 GeV discovery) Higgsino: ~ 260 GeV exclusion (~150 GeV discovery)

Complementarity with soft-lepton analysis in higgsino-like scenarios

https://arxiv.org/pdf/1805.00015.pdf

 Extrapolation of ATLAS-36/fb analysis for disappearing track to HL, HE and FCC-hh

HE-LHC and FCC-hh

transverse charged track length must be in specific ranges to retain sensitivity

\sqrt{s}	E_T [GeV]	p_{T,j_1} [GeV]	p_{T,j_2} [GeV]	$p_{T,\text{track}} [\text{GeV}]$
14 TeV	150	150	70	250
27 TeV	400 - 700	400 - 600	140	400 - 700
100 TeV	1000 - 1400	700 - 1400	500	1000 - 1400

95% C.L.	Wino	Wino	Higgsino	Higgsino
	Monojet /	Disappearing Track	Monojet /	Disappearing Track
$14 \mathrm{TeV}$	$280~{ m GeV}$	$900~{\rm GeV}$	$200~{ m GeV}$	$300~{\rm GeV}$
$27 \mathrm{TeV}$	$700~{ m GeV}$	$2.1~{ m TeV}$	/490 GeV	$600~{ m GeV}$
$100 \mathrm{TeV}$	2 TeV	$6.5~{ m TeV}$	1.4 TeV	1.6 TeV

Only slightly more optimistic for HL-LHC wrt experimental search

CLIC: Disappearing track signatures

In this case, the chargino leaves a "charged" trackstub in the detector. Two analyses:

- charge-stub only
- charge-stub + photon

 $d_{min}(\theta)$ = minimum distance a single $\chi \pm$ must travel in the detector before decaying in order to register 4 hits in the CLIC tracker

$$d_{\min}(\theta) = \begin{cases} \frac{4.4 \text{ cm}}{\sin \theta} & 19^{\circ} < \theta < 90^{\circ} \\ \frac{22 \text{ cm}}{\cos \theta} & 13^{\circ} < \theta < 19^{\circ} \\ \frac{29 \text{ cm}}{\cos \theta} & 8^{\circ} < \theta < 13^{\circ} \end{cases},$$

Particles produced at polar angles θ < 8_{\circ} are assumed to exit the detector without registering hits.

$$N_{\text{evts}}^{1-\text{stub}} = \mathcal{L}_{\text{int}} \times \int_{-1}^{1} \frac{d\sigma(e^{+}e^{-} \to \chi^{+}\chi^{-})}{d\cos\theta} [2P_{\text{s}}(d_{\text{min}}) - P_{\text{s}}(d_{\text{min}})^{2}] d\cos\theta$$

$$N_{\text{evts}}^{2-\text{stub}} = \mathcal{L}_{\text{int}} \times \int_{-1}^{1} \frac{d\sigma(e^{+}e^{-} \to \chi^{+}\chi^{-})}{d\cos\theta} P_{\text{s}}(d_{\text{min}})^{2} d\cos\theta.$$

$$P_{\rm s}(d_{\rm min}) = e^{-m_{\chi}d_{\rm min}\Gamma_{\chi}/|\vec{p}_{\chi}|}$$

Survival probability

charge-stub only

CLIC: Disappearing track signatures

In this case, the chargino leaves a "charged" trackstub in the detector. Two analyses:

- charge-stub only
- charge-stub + photon

 $d_{min}(\theta)$ = minimum distance a single $\chi \pm$ must travel in the detector before decaying in order to register 4 hits in the CLIC tracker

$$d_{\min}(\theta) = \begin{cases} \frac{4.4 \text{ cm}}{\sin \theta} & 19^{\circ} < \theta < 90^{\circ} \\ \frac{22 \text{ cm}}{\cos \theta} & 13^{\circ} < \theta < 19^{\circ} \\ \frac{29 \text{ cm}}{\cos \theta} & 8^{\circ} < \theta < 13^{\circ} \end{cases},$$

Particles produced at polar angles $\theta < 8_{\circ}$ are assumed to exit the detector without registering hits.

charge-stub + photon

require sufficiently hard initial state radiation (ISR) in conjunction with one or more charged stubs.

CLIC: disappearing track analysis

Charged stub

+ photon analysis

Overall results and reach

95% CLIC exclusion reach for pure higgsinos in each of the eight analysis strategies, assuming zero background in each analysis

A word on ILC chargino and neutralino searches

Parameters considered for the original studies:

 $\begin{array}{lll} \mathrm{dM1600} & M_1 \,=\, 1.70 \, \mathrm{TeV}, \, M_2 \,=\, 4.36 \, \mathrm{TeV}, \, \mu \,=\, 165.89 \, \mathrm{GeV}, \, \tan\beta|_{m_Z} \,=\, 44, \\ & M_{\widetilde{\chi}_1^\pm} \,=\, 165.77 \, \mathrm{GeV}, \, M_{\widetilde{\chi}_1^0} \,=\, 164.17 \, \mathrm{GeV}, \, M_{\widetilde{\chi}_2^0} \,=\, 166.87 \, \mathrm{GeV}, \, m_h \,=\, 124 \, \mathrm{GeV}; \\ \mathrm{dM770} & M_1 \,=\, 5.30 \, \mathrm{TeV}, \, M_2 \,=\, 9.51 \, \mathrm{TeV}, \, \mu \,=\, 167.40 \, \mathrm{GeV}, \, \tan\beta|_{m_Z} \,=\, 48, \\ & M_{\widetilde{\chi}_1^\pm} \,=\, 167.36 \, \mathrm{GeV}, \, M_{\widetilde{\chi}_1^0} \,=\, 166.59 \, \mathrm{GeV}, \, M_{\widetilde{\chi}_2^0} \,=\, 167.63 \, \mathrm{GeV}, \, m_h \,=\, 127 \, \mathrm{GeV}. \end{array}$

htt	ps://	arxiv.c	org/pc	lf/1307	7.3566	.pdf

$\tilde{\chi}_1^+$ decay mode	BR(dM1600)	BR(dM770)
$e\nu\widetilde{\chi}^0_1$	17.3%	15.0%
$\mu u\widetilde{\chi}_1^0$	16.6%	13.7%
$\pi^+\widetilde{\chi}^0_1$	16.5%	60.4%
$\pi^+\pi^0\widetilde{\chi}^0_1$	28.5%	7.3%
$\pi^+\pi^0\pi^0\widetilde{\chi}^0_1$	7.5%	0.03%
$\pi^+\pi^+\pi^-\widetilde{\chi}^0_1$	7.1%	0.03%
$\pi^+\pi^+\pi^-\pi^0\widetilde{\chi}_1^0$	2.4%	_
$\pi^+\pi^0\pi^0\pi^0\widetilde{\chi}_1^0$	0.5%	_
$K^+\widetilde{\chi}^0_1$	1.2%	3.5%
$K^0\pi^+\widetilde{\chi}^0_1$	1.0%	0.03%
$K^+\pi^0\widetilde{\chi}_1^0$	0.5%	0.02%

$\widetilde{\chi}_2^0$ decay mode	BR(dM1600)	BR(dM770)
$\gamma \widetilde{\chi}^0_1$	23.6%	74.0%
$ uar u\widetilde\chi_1^0$	21.9%	9.7%
$e^+e^-\widetilde{\chi}^0_1$	3.7%	1.6%
$\mu^+\mu^-\widetilde{\chi}^0_1$	3.7%	1.5%
hadrons $+\widetilde{\chi}_1^0$	44.9%	12.7%
$\widetilde{\chi}_1^{\pm} + X$	1.9%	0.4%

Use reduced centre-of-mass energy of the system recoiling against the photon (s' = s - 2 sqrt(s) E_q) \rightarrow while this is not a dedicated analysis, reach down to low Δm

Higgsino cross-section @ e-p

probability of detecting it as an LLP

$$P_{\text{detect}}^{(k)} = \sum_{i} \text{Br}_{i}(\Delta m(c\tau)) P_{i}(c\tau)$$

Single low-energy charged tracks are reconstructed if the minimum displacement between primary and secondary vertex (r0) is at least 40 μ m, and the minimum p_T of the charged SM particle is at least 100 MeV.

LHeC and FCC-eh: disappearing track

 m_{χ^+} (GeV)

Sensitive to lifetimes as short as microseconds which makes it also complementary to pp searches

Good reach also for wino-like cases (as the production cross section is bigger)

Lessons learned: pure-wino/higgsino and analyses

- Disappearing tracks analysis very challenging:
 - Review of the assumptions made for fake backgrounds by the ATLAS prospect studies might be good (e.g. extrapolation of bkg using 3 hits instead of 4 for tracklet reconstructions)
 - Prospect studies from CMS based on the recently published disappearing track analysis would be excellent
- Are prospects for FCC-hh realistic? Are zero—background hypothesis too optimistic?
 - Dedicated analyses with specific assumptions (optimistic or pessimistic) on the detectors layout and level of pile-up / background should be made to assess the reach

Higgsino-like EWK processes

Processes: $\chi^{+}_{1}\chi^{-}_{1}$, $\chi^{\pm}_{1}\chi^{0}_{2}$, $\chi^{0}_{1}\chi^{0}_{2}$

Higgsino-like (i.e. large higgsino component but not pure):

 \rightarrow Δ M(NLSP, LSP) ~ O(GeV)

Pure-higgsino:

 \rightarrow Δ M ~ 160 MeV - targeted by disappearing track analyses

Lessons learned: higgsino-like scenarios

- At the time of the Yellow Report and ES document ATLAS and CMS managed to reach an excellent set of results in compressed scenarios → one could envisage a better coherence on the model assumptions used for the soft lepton analyses
- As compressed scenarios are the most interesting for complementarities with e+e-colliders, reinterpretation of monojet analyses in the higgsino-like scenario as a function of ΔM would be fundamental, i.e. in the 1-20 GeV range
 - we can expect some sensitivity there!
 - It is very important to understand (1) complementarities with e+e- and e-p colliders (2) impact on systematics and discovery potential
- There are no dedicated studies for FCC-hh, only extrapolations → would be very important to perform a more realistic and dedicated set of analyses!
- Follow up on possible deviations observed at HL-LHC should be made